A Monoclonal Antibody to the Estrogen Receptor Discriminates between the Nonactivated and Activated Estrogen—and Anti-Estrogen—Receptor Complexes[†]

Jean-Louis Borgna, Joël Fauque, and Henri Rochefort*

ABSTRACT: An IgM-class monoclonal antibody (B₃₆) [Greene, G. L., Fitch, F. W., & Jensen, E. V. (1980) *Proc. Natl. Acad. Sci. U.S.A.* 77, 157–161] raised against the calf uterine estrogen receptor (R) was used to probe the structure of R bound to estradiol or to 4-hydroxytamoxifen, a nonsteroidal antiestrogen which displays a high affinity for R. This antibody does not noticeably modify the interaction of R with these ligands, but R, when bound to B₃₆, is markedly displaced in both low- and high-salt sucrose gradients. We found the following: (1) The B₃₆ antibody interacts more strongly with activated cytosol estradiol— and 4-hydroxytamoxifen—R complexes than with nonactivated (molybdate-stabilized) complexes. (2) This antibody also interacts strongly with the

nuclear forms of R bound to estradiol or to the anti-estrogen. (3) The affinity of B_{36} for the nonactivated R-4-hydroxytamoxifen complex is 3-fold greater than for the nonactivated R-estradiol complex. The difference is slightly less pronounced for activated complexes. (4) Preincubation of activated R with saturating amounts of B_{36} partially ($\leq 60\%$) inhibits the binding of R-ligand complexes to DNA adsorbed onto cellulose. These results suggest that the B_{36} and DNA binding domains of R are related and strengthen the hypothesis that R has different external structures when activated or nonactivated and when bound to an anti-estrogen or to estradiol.

he hormone-induced process which transforms the estrogen receptor (R) into an "activated" form able to be retained in the nucleus and trigger hormonal responses is not understood in molecular terms. This is mainly because native R has not been purified, which would allow physicochemical studies to be performed in the presence or absence of estradiol. However, several approaches have been used recently to study the activation of R. Sodium molybdate is known to stabilize steroid receptors in forms that are unable to undergo activation or to bind DNA and nuclei (Leach et al., 1979; Nishigori & Toft, 1980). High-affinity anti-estrogens such as 4-hydroxytamoxifen are partial (Jordan et al., 1977) or full estrogen antagonists (Westley & Rochefort, 1980) in mammalian systems even though their affinity for R is similar to that of estradiol (Borgna & Rochefort, 1980). On the basis of modification of the hormone (Weichman & Notides, 1977) and DNA (Yamamoto & Alberts, 1972; André & Rochefort, 1973) binding sites of R during activation, we have proposed that R has a different conformation when bound to anti-estrogen rather than estradiol (Rochefort & Borgna, 1981; Evans et al., 1982; Rochefort et al., 1983). One important advance in the study of R has been the preparation of specific monoclonal antibodies (Greene et al., 1980a,b; Montcharmont et al., 1982). These antibodies allow R to be characterized not only in terms of its steroid or DNA binding but also in terms of its specific antigenic determinants. Antibodies to the calf uterine R displace the R-4-hydroxytamoxifen complex in sucrose gradients (Garcia et al., 1982), and these antibodies can therefore be used to compare R bound to estrogens or to anti-estrogens. In this study, we have used the B₃₆ monoclonal antibody prepared against the purified calf uterine nuclear R (Greene et al., 1980a) in an attempt to answer the following questions:

(1) Is this antibody able to discriminate between the nonactivated (molybdate-stabilized) and activated R? (2) Is it able to discriminate between the R-estradiol and R-4-hydroxytamoxifen complexes? (3) Does this antibody interfere with the binding of R to DNA?

Materials and Methods

Materials. (Z)-[3H]-4-Hydroxytamoxifen (specific activity 42 Ci/mmol; radiochemical purity >90%) was purified (J-L. Borgna, unpublished results) from the Z-E mixture donated by Dr. A. H. Todd (ICI Laboratories, Macclesfield, England). The Z and E isomers of [${}^{3}H$]-4-hydroxytamoxifen were acetylated, separated on a Merck analytical thin-layer silica gel plate, and subsequently hydrolyzed by K₂CO₃ in methanol. [6,7-3H]Estradiol (specific activity 50 Ci/mmol; radiochemical purity >95%) was purchased from CEA (Gif-sur-Yvette, France). Preparations of B₃₆ monoclonal antibody (40% ammonium sulfate precipitate from the culture medium of a secreting hybridoma cell line) raised against the purified calf uterine nuclear R (Greene et al., 1980a) were kindly provided by Drs. G. L. Greene and E. V. Jensen (Ben May Laboratory, Chicago, IL). They were used either immediately or after purification on Bio-Gel A 1.5m (Greene et al., 1980a).

Cytosol Estrogen Receptor: Preparation and Assay. Cytosol from fresh or frozen (-80 °C) immature calf or rat uteri was prepared in buffer T [10 mM tris(hydroxymethyl)-aminomethane hydrochloride (Tris-HCl), pH 7.4] as described previously (Capony & Rochefort, 1975). Cytosol was diluted with 5% buffer T or with 200 mM Na_2MoO_4 in buffer T, and then 2 nM [3 H]estradiol or [3 H]-4-hydroxytamoxifen was added with or without 1 μ M nonradioactive estradiol. Stock solutions of ligands were in ethanol (final ethanol concentration in cytosol = 1%). Aliquots were incubated for 2-4 h at 0 °C and then for 0.5 h at 25 °C. In some cases, the 25 °C incubation was omitted. Aliquots were then treated with dextran-coated charcoal at 0 °C for 0.5-2 h as described previously (Borgna & Rochefort, 1980). The radioactivity in the charcoal-treated samples was measured, and the specific

[†]From the Unité d'Endocrinologie Cellulaire et Moléculaire, IN-SERM U 148, 34100 Montpellier, France. Received June 7, 1983; revised manuscript received November 15, 1983. This work was supported by the Institut National de la Santé et de la Recherche Médicale and the Centre National de la Recherche Scientifique.

binding of ³H-labeled ligands was determined according to Blondeau & Robel (1975).

Nuclear Estrogen Receptor. KCl nuclear extracts were prepared after incubation of fresh calf uterine slices in Dulbecco's modified Eagle's medium [containing 10 nM [³H]-estradiol or 75 nM [³H]-4-hydroxytamoxifen] for 2 h at 37 °C in an O₂/CO₂ (95:5) atmosphere. The tissues were first rinsed with fresh medium and then with buffer T. They were homogenized in buffer T. The crude nuclear pellets (10³g for 10 min) were washed with buffer T, resuspended in buffer TK (10 mM Tris-HCl-400 mM KCl, pH 7.4), left 0.5 h at 0 °C, and then centrifuged (10⁵g for 1 h) to obtain the KCl nuclear extracts. Radioactivity was measured before and after 1 h of charcoal treatment at 0 °C.

Interaction of the Estrogen Receptor with B_{36} Antibody: Sucrose Gradient Analysis. Aliquots of uterine cytosol and nuclear extracts labeled with ³H-labeled ligands that had been treated (cytosol) or not treated (nuclear extracts) with charcoal were incubated for 2-4 h at 0 °C with varying amounts of the B₃₆ monoclonal antibody. Samples were mixed with ¹⁴C-labeled marker proteins (bovine serum albumin and bovine globulin) and layered onto 10-30%, 10-40%, or 10-50% sucrose gradients prepared in TE buffer [10 mM Tris-HCl-1.5] mM ethylenediaminetetraacetic acid (EDTA), pH 7.4] or TKE buffer (10 mM Tris-HCl, 400 mM KCl, and 1.5 mM EDTA, pH 7.4) with or without 5 mM Na₂MoO₄. Low-salt gradients were centrifuged for 13.5 h at 150000g_{av}. High-salt gradients were centrifuged for 14 h at 190000g_{av}. The gradients were fractionated from the bottom of the tube, and the radioactivity present in each fraction and on the bottom of the tube was counted in 3 mL of Bray's mixture.

DNA-Cellulose Binding. Aliquots (300 μ L) of charcoal-treated cytosol incubated with or without B₃₆ were agitated with 200 μ L of cellulose or DNA-cellulose [prepared according to Alberts & Herrick (1971)] for 12-17 h at 0 °C. After centrifugation, the supernatants were discarded, and the pellets were washed twice with 3 mL of TE buffer. The radioactivity in the final pellets was extracted with 2 × 1.5 mL of ethanol and counted. Specific binding to DNA was defined as the difference between binding to DNA-cellulose and to cellulose alone as described elsewhere (Evans et al., 1982).

Miscellaneous. Protein concentrations were measured spectrophotometrically (Layne, 1957). DNA was measured according to Burton (1956). The radioactivity of the samples was counted either in 3 mL of Bray's mixture or in 3 mL of ethanol + 10 mL of a 2,5-diphenyloxazole (PPO)-1,4-bis-[2-(5-phenyloxazolyl)]benzene (POPOP)-toluene mixture by using a Kontron-Intertechnique SL 30 scintillation spectrophotometer with efficiencies of 40% (Bray's mixture) and 25% (PPO/POPOP/toluene mixture). The statistical comparisons of the K_A's calculated for the interaction of the various forms of R with B₃₆ and of the percentages of inhibition for R-DNA binding by B₃₆ were performed by using the nonparametric test of Mann & Withney (1947).

Results

B₃₆ Antibody Interacts More Strongly with the Activated Cytosol Estrogen Receptor Than with Its Molybdate-Stabilized Form. To study the effect of the B₃₆ monoclonal antibody on the interaction of ligand with R, kinetic and equilibrium studies were performed using calf uterine cytosol preincubated with or without saturating amounts of B₃₆. B₃₆ did not noticeably affect either the kinetics of binding (Figure 1a) or the binding at equilibrium (Figure 1b) of 4-hydroxytamoxifen to R since the number of binding sites and

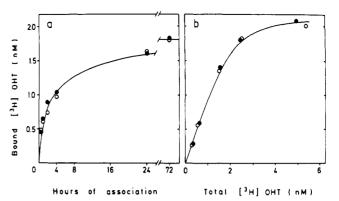


FIGURE 1: Binding of 4-hydroxytamoxifen to the estrogen receptor in the presence or absence of B_{36} antibody. Calf uterine cytosol was incubated with (O) or without (\blacksquare) 200 μg of B_{36}/mL for 3 h at 0 °C. Then aliquots were incubated at 0 °C with [3H]-4-hydroxytamoxifen in the presence or absence of 1 μM radioinert estradiol. Binding to R was assayed by charcoal adsorption after a 1.5-h incubation at 0 °C and calculated according to Blondeau & Robel (1975). (a) Time course of saturable binding with 2.5 nM [3H]-4-hydroxytamoxifen. (b) Saturation experiment performed at binding equilibrium (72 h) with 0.3-5 nM concentrations of [3H]-4-hydroxytamoxifen.

the affinity as measured by the charcoal assay were similar in the presence and absence of B_{36} . The same results were obtained for estradiol (not shown).

The reactivity of the activated or molybdate-stabilized calf uterine cytosol R-estradiol complexes with the B₃₆ monoclonal antibody was studied by sucrose gradient analysis. The IgMclass B₃₆ antibody markedly displaced the R-ligand complex, thus allowing easy separation and quantification of the free and B₃₆-bound R-estradiol complexes in low- and high-salt sucrose gradients (Figure 2). In low-salt gradients, the sedimentation coefficient of the 8S activated or molybdate-stabilized R-estradiol complexes (Figure 2a) was increased to 14-15 S (Figure 2b) while in high-salt gradients the sedimentation coefficient of the 4.5S R-estradiol complexes (Figure 2c) was increased to 12-13 S (Figure 2d). We conclude that the heavy peaks resulted from a specific interaction of the R-estradiol complex with the B₃₆ antibody because of the following observations: (1) The sedimentation of the rat R-estradiol complex which does not interact with B₃₆ (Greene et al., 1980a) was not altered by the B₃₆ antibody (not shown). (2) The shift was not the result of aggregation of R (Figure 5d). Using unlabeled estradiol, we verified that the nonspecifically bound estradiol did not interfere with the different peaks found in the sucrose gradients since it was recovered only as free estradiol at the top of the gradient. B₃₆ interacted more with the activated R than with the molybdate-stabilized R (Figure 2b,d): the same concentration of the antibody increased the sedimentation coefficient of almost all the activated R whereas only a small proportion of the molybdatestabilized R was affected. Higher concentrations of B₃₆ were required to displace all the molybdate-stabilized R (not shown). The reactivity of the R-estradiol complex from unwarmed cytosol was similar to that of the molybdate-stabilized warmed complex, and the activation of R appeared to be irreversible since molybdate did not alter the degree of interaction with the B₃₆ antibody when added after warming (not shown). Whether KCl was added to the incubation medium or only to the sucrose gradients did not affect the interaction of B₃₆ with R. Comparison of panels b and d of Figure 2 suggests that KCl decreases the interaction of B₃₆ and R-estradiol complexes. These two experiments, however, were performed separately; analysis of the B₃₆-R-estradiol complexes in single experiments did not confirm this result. We conclude that the

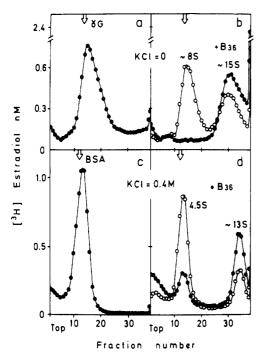


FIGURE 2: Effect of estrogen receptor activation on its interaction with B_{36} antibody. Calf uterine cytosol [(a,b) 3.3 mg of protein/mL; (c, d) 4.7 mg of protein/mL] with (O) or without (\bullet) 10 mM Na₂MoO₄ was incubated with 2 nM [³H]estradiol for 3 h at 0 °C and then warmed at 25 °C for 0.5 h. After treatment with charcoal (1 h at 0 °C), 200- μ L aliquots were incubated for 2 h at 0 °C with 300 (b) or 250 μ g/mL (d) B_{36} antibody, or without antibody (a, c), and subsequently centrifuged in 10–30% sucrose gradients prepared in TE (a, b) or TKE (c, d) buffer containing 5 mM Na₂MoO₄. Gradient fractions were counted in Bray's mixture. After charcoal treatment, the saturable binding of [³H]estradiol accounted for more than 95% of the radioactivity in the samples. ¹⁴C-Labeled bovine γ -globulin (γ G, 7.7 S) and bovine serum albumin (BSA, 4.5 S) were used as internal markers.

B₃₆ antibody reacts more strongly with the activated R-estradiol complex than with the molybdate-stabilized complex.

Cytosol and Nuclear Estrogen Receptor-4-Hydroxytamoxifen Complexes Interact with the B₃₆ Antibody. Both the molybdate-stabilized and the activated R-4-hydroxytamoxifen complexes prepared from calf uterine cytosol reacted with B₃₆. As observed for the R-estradiol complexes, the sedimentation coefficient of the R-4-hydroxytamoxifen complexes was increased by the B₃₆ antibody from 8 to 14-15 S (low-salt gradient, Figure 3) and from 4-5 to 12-13 S (high-salt gradient, not shown). The 12-15S forms observed after the addition of B₃₆ corresponded to B₃₆-R-4-hydroxytamoxifen complexes, since they were not observed in the presence of an excess of nonradioactive estradiol. The 4-hydroxytamoxifen that was bound nonspecifically sedimented exclusively as a 4.5S peak in both low- and high-salt sucrose gradients in the presence and absence of B₃₆. The interaction of B₃₆ with the R-4-hydroxytamoxifen complex was specific for the calf R since the sedimentation of the rat R-4-hydroxytamoxifen complex was not affected by the B₃₆ antibody (not shown). As observed for estradiol, the R-4-hydroxytamoxifen complex reacted more strongly with B₃₆ when heat activated than when stabilized by molybdate (Figure 3b). All of the R-4hydroxytamoxifen complexes could be displaced by the B₃₆ antibody, indicating that the totality of the saturable antiestrogen binding was to R under these conditions. We then measured the ability of B₃₆ to react with nuclear R formed by incubation of uterine slices with [3H]estradiol or [3H]-4hydroxytamoxifen in vitro. Low concentrations of B₃₆ increased the sedimentation coefficient of all the 4.5S R com-

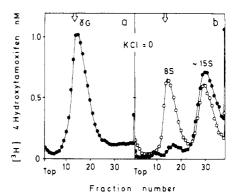


FIGURE 3: Interaction of the estrogen receptor-4-hydroxytamoxifen complexes with B_{36} antibody: effect of receptor activation. Experiments similar to those described in Figure 2a,b were performed in low-salt sucrose gradients using 2 nM [3 H]-4-hydroxytamoxifen instead of [3 H]estradiol. (a) Cytosol incubated without B_{36} . (b) Cytosol without molybdate. (O) Cytosol with molybdate. After charcoal treatment, the saturable binding of [3 H]-4-hydroxytamoxifen accounted for more than 95% of the radioactivity in the samples.

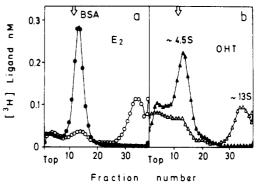


FIGURE 4: Interaction of the nuclear estrogen receptor with B_{36} antibody. KCl nuclear extracts (1.4 mg of protein/mL) prepared after in vitro incubation of calf uterine slices with 10 nM [3 H]estradiol (a) or 75 nM [3 H]-4-hydroxytamoxifen (b), as described under Materials and Methods, were then incubated with (O, Δ) or without (\bullet , Δ) 100 μ g/mL B_{36} antibody for 2 h at 0 °C. Aliquots were analyzed in 10-30% sucrose gradients prepared in TKE buffer. On the basis of the charcoal-resistant radioactivity, the specific binding in nuclear extracts was about 70% for [3 H]-estradiol and 55% for [3 H]-4-hydroxytamoxifen. The nonspecific binding of 4-hydroxytamoxifen is located only in the 4-5S region (see Figure 5).

plexes to ~ 13 S (Figure 4a,b), suggesting that both estradioland 4-hydroxytamoxifen-nuclear R complexes react better with B_{36} than the corresponding activated cytosol complexes.

Differences between the Interactions of the B_{36} Antibody with the Estrogen Receptor Bound to Estradiol or to 4-Hydroxytamoxifen. The R-estradiol and R-4-hydroxytamoxifen complexes were then compared by using the B₃₆ antibody as a probe (Figure 5). The reactivities of activated and nonactivated estradiol- and 4-hydroxytamoxifen-R complexes were estimated from the ratio B₃₆-bound R/unbound R. Since the B₃₆-R complexes sedimented nearly at the bottom of the tube in 10-30% sucrose gradients (Figure 5a,b), we also used 10-40% and 10-50% sucrose gradients (Figure 5d,e) to show that there are no nonspecific aggregates. In all cases, similar differences were found between the reactivities of the R-estradiol and R-4-hydroxytamoxifen complexes. B₃₆ reacted with higher affinity with the nonactivated 4-hydroxytamoxifen-R complex than with the corresponding estradiol-R complex. The difference persisted but was less marked for the activated complexes. The 13-15S peak clearly represents the B₃₆-R-4-hydroxytamoxifen complex since there is no nonspecifically bound 4-hydroxytamoxifen in this region

Table I: Relative Affinities of Estrogen Receptor for B₃₆ Antibody: Effect of Activation and Binding to Estradiol or 4-Hydroxytamoxifen^a

	B ₃₆ concn	rel affinities ^b					increase by vation ^c
expt	$(\mu g/mL)$	$\overline{R_{i}-E_{2}}$	R _i -OHT	R _a -E ₂	R _a -OHT	E ₂	ОНТ
 1	25	1		5.3	6.9	5.3	
2	80*	1	4.4	4.3	14.2	4.3	3.2
3	80*	1	2.9	4.9	16.5	2.9	5.7
4	80*	ī	2.8	3.5	9.5	3.5	3.4
5	200	ī	2.7	5.1	8.0	5.1	3.0
6	250	1		4.8		4.8	
7	250	ī	2.6				
8	250	1	3.0				
9	250	1	2.6				
10	300	ī		4.5		4.5	
10	230	$\frac{1}{1}d$	$3.0^{d,e}$	4.6 d,f	11.0^{d-f}	4.6 ^d	$3.7^{d,e}$

^a Cytosols with or without molybdate were incubated with 2 nM [³H]estradiol or [³H]-4-hydroxytamoxifen at 0 °C and then for 0.5 h at 25 °C. After charcoal treatment, aliquots were incubated with varying amounts of crude or purified (*) B_{36} antibody for 2-3 h at 0 °C. The concentrations of B_{36} -bound and unbound R^3 H-labeled ligand complexes were then measured in 10-30% (experiments 1, 2, and 5-10), 10-40% (experiment 3), or 10-50% (experiment 4) sucrose gradients prepared in TKE buffer and containing 5 mM Na_2MoO_4 as described in Figures 2 and 3. For the different R^3 H-labeled ligand complexes, the ratio of B_{36} -bound R to unbound R was calculated and taken as the measure of the relative affinity of the R complexes for B_{36} . ^b Relative affinities of the different forms of R complexes for B_{36} were standardized by taking the relative affinity for the moly bdate-stabilized R^{-} [³H]estradiol complex ($R_1^-E_2$) as 1 in the same experiment. R_1 (non-activated R) and R_4 (activated R) correspond, respectively, to the cytosol R warmed in the presence or absence of 10 mM Na_2MoO_4 . ^c Factor of increase in the affinity of R complexes for B_{36} antibody elicited by activation. It was calculated as the ratio of the relative affinities of B_{36} for R_4 and R_1 as measured in the same experiment. ^d Mean values. ^e According to Mann and Withney's test, this value was significantly (p < 0.01) greater than the value for the nonactivated complexes.

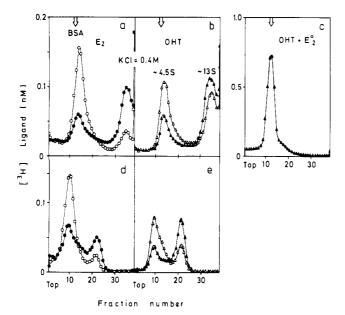


FIGURE 5: Relative reactivities to B₃₆ antibody of the estrogen receptor bound to estradiol or to 4-hydroxytamoxifen. Calf uterine cytosol [(a-c) 5.1 mg of protein/mL; (d, e) 1.7 mg of protein/mL] with (O, Δ) or without (Φ, Δ) molybdate was incubated for 2 h at 0 °C with 2 nM [3H]estradiol or 2 nM [3H]-4-hydroxytamoxifen in the presence or absence of 1 µM radioinert estradiol, and R was activated for 0.5 h at 25 °C. Aliquots treated (a, b, d, e) or untreated (c) with charcoal (0.5 h at 0 °C) were incubated with 200 (a-c) or 80 μ g/mL (d, e) B₃₆ antibody for 3 h at 0 °C and then analyzed in 10-30% (a-c) or 10-50% (d, e) sucrose gradients prepared in TKE buffer containing 5 mM Na₂MoO₄. (a, b, d, e) Saturable binding or [³H]estradiol (a, d) and [3H]-4-hydroxytamoxifen (b, e). After charcoal treatment, the concentrations of the R-ligand complexes were 0.95 (a, b) and 0.72 nM (d, e) for both ligands, and the percentages of nonspecific binding were inferior to 10% and 20% for estradiol and 4hydroxytamoxifen, respectively. (c) Unsaturable binding of [3H]-4-hydroxytamoxifen measured in the presence of radioinert estradiol.

(Figure 5c). In high-salt gradients, the amount of specifically bound 4-hydroxytamoxifen sedimenting at 4.5 S was determined by subtracting the amount of 4-hydroxytamoxifen bound nonspecifically from the total bound 4-hydroxytamoxifen.

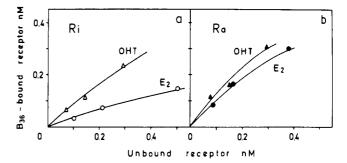


FIGURE 6: Initial saturation of B₃₆ antibody by the estrogen receptor bound to estradiol or to 4-hydroxytamoxifen. Calf uterine cytosol [(a) 4.3 mg of protein/mL; (b) 5.0 mg of protein/mL] in the presence (a) or absence (b) of 10 mM Na₂MoO₄ was incubated for 3.5 h at O C with 2 nM [3H]estradiol or [3H]-4-hydroxytamoxifen and then warmed at 25 °C for 0.5 h. After charcoal treatment (1 h at 0 °C), increasing volumes (50, 100, and 200 µL) of cytosol were incubated for 2 h at 0 °C in a final volume of 220 µL with a constant concentration of B_{36} [(a) 250 μ g/mL; (b) 25 μ g/mL]. Aliquots were analyzed in 10-30% sucrose gradients prepared in TKE buffer containing 5 mM Na₂MoO₄ as in Figure 5. The radioactivity of the 13S peak was taken as the B₃₆-bound R. The radioactivity of the 4.5S peak as corrected for nonsaturable binding of ligands (determined with 1 μ M radioinert estradiol) was taken as the unbound R. This nonspecific binding accounted in both cases for less than 6% of the total radioactivity. The concentrations of B₃₆-bound R⁻³H-labeled ligand complexes are plotted against the concentrations of unbound $R^{-3}H$ -labeled ligand complexes. (a) R_i = molybdate-stabilized R. (b) R_a = activated R. (O, lacktriangle) R-[3H]estradiol complexes. (Δ , Δ) R-[3H]-4-hydroxytamoxifen complexes. The relative affinities calculated from these experiments are given in Table I [(a) experiment 7; (b) experiment 1].

To estimate the association constant (K_A) for the interaction of B_{36} with the various complexes, increasing concentrations of R-ligand complexes were incubated with a constant amount of the B_{36} antibody. The amount of complex bound to B_{36} increased with the concentration of unbound complex. Figure 6 shows the saturation curves obtained from two different experiments using either molybdate-stabilized (a) or activated complexes (b). For the nonactivated complexes (R_i) , the slope was steeper for the R-4-hydroxytamoxifen complex than for the R-estradiol complex. For the activated complexes (R_a) ,

Table II: Decrease of the Estrogen Receptor-DNA Interaction by B₃₆ Antibody ^a

	preactiva- tion	[B ₃₆] (µg/mL)	[DNA] (mg/mL)	R cpm input		DNA-bound R cpm (% input)		rel DNA binding	
expt	at 25 °C			R-E ₂	R-OHT	R-E ₂	R-OHT	R-E ₂	R-OHT
1		0	1.20	4070		2370 (58)		100	
	_	80	1.20	4070		1890 (46)		79	
2	+	0	0.30	7180		1120 (16)		100	
	+	200	0.30	7180		400(6)		38	
3	+	0	0.70	9730		2120 (22)		100	
	+	240	0.70	9730		920 (9)		43	
	+	210*	0.70	9730		910 (9)		43	
4	+	0	0.66	9030		2460 (27)		100	
	+	260	0.66	9030		1260 (14)		52	
5a	+	0	0.70	8830		1860 (21)		100	
	+	210*	0.70	8830		960 (11)		52	
5b	+	0	0.70	10230		1370 (13)		100	
	+	210*	0.70	10230		1380 (13)		100	
6	+	0	0.12	15710	12260	1890 (12)	1480 (12)	100	100
	+	180	0.12	15710	12260	1100(7)	1100 (9)	58	75
7a	+	0	0.85	17630		3850 (22)		100	
	+	240	0.85	17630		1430(8)		57	
7b	_	0	0.85	16020	12420	4860 (30)	3150 (25)	100	100
	_	240	0.85	16020	12420	1640 (10)	2360 (19)	37	76
8	+	0	0.10	10890	13010	2480 (12)	1620 (12)	100	100
	+	260	0.10	10890	13010	1570 (8)	1220 (9)	66	75
		0^{b}				\ - <i>y</i>		100 ^b 47 ^{b,d}	
		0^{c}						100° 49°	100° 75°,e

^a Calf or rat (experiment 5b) uterine cytosols labeled with 2 nM [3 H]estradiol or [3 H]-4-hydroxytamoxifen either for 3 h at 0 °C or for 2.5 h at 0 °C and then 0.5 h at 25 °C were treated with a charcoal suspension for 1 h at 0 °C. The specific binding of 3 H-labeled ligands accounted for more than 95% (estradiol) and more than 80% (4-hydroxytamoxifen) of the radioactivity of charcoal-treated cytosols. Aliquots (300 μL) were incubated with or without varying amounts of crude or purified (*) B $_{36}$ antibody (80-260 μg/mL) for 2-3 h at 0 °C, then added to a 200-μL suspension of cellulose or DNA-cellulose (0.10-1.20 mg of DNA/mL), and agitated at 0 °C for 12-17 h. After centrifugation, the cellulose and DNA-cellulose pellets were washed twice with TE buffer (3 mL), and then their radioactivity was extracted with 2 × 1.5 mL of ethanol and counted. Residual DNA was measured in the pellets by Burton's method. Specific binding to DNA was calculated as the difference between the radioactivities bound to DNA-cellulose and to cellulose. The amount of R-[3 H]estradiol (R-E₂) and R-[3 H]-4-hydroxytamoxifen (R-OHT) bound to DNA is expressed as cpm and also as a percentage of the amount of complex incubated with DNA. The relative binding to DNA of R- 3 H-labeled ligand complexes preincubated with B₃₆ is also calculated by taking the value for DNA binding to complexes not incubated with B₃₆ as 100%. b Mean percentage of the binding of calf uterine complexes to DNA for experiments 1-8 (R-E₂). C Mean percentage of the binding of calf uterine complexes to DNA for experiments 6-8 (R-E₂ and R-OHT). d According to Mann and Withney's test, this value was significantly (p < 0.01) less than the 100% value corresponding to the binding of the R-E₂ complex to DNA in the absence of B₃₆. Not significantly greater than the 49% value corresponding to the binding of the R-E₂ complex to DNA in the presence of B₃₆.

the mean difference calculated from a series of experiments (Table I) was more marked than that shown in Figure 6b. The relative affinities of the R complexes for B₃₆ were calculated from the initial slopes of the saturation curves (Figure 6). These calculations assume the following: (i) The binding sites of B₃₆ for the R are equivalent and independent; thus, the slope at the origin of the saturation curves is equal to K_aN (N being the binding capacity of B₃₆ for R). (ii) For a constant ionic strength, N is the same for the activated and molybdate-stabilized R and for estrogen- and anti-estrogen-R complexes; thus, the slopes of the saturation curves are relative measures of the K_A values. We have further verified by gel filtration and ultracentrifugation in sucrose gradients that the Stokes radius and the sedimentation constant of the calf uterine R were not altered during the activation process. This suggests that dimerization of R did not occur under the conditions used in these experiments and therefore that N is the same before and after activation. To normalize the values calculated from the different experiments, the affinity of the molybdate-stabilized R-estradiol complex was taken as 1.

As shown in Table I, the affinity of B_{36} for activated R (R_a) was significantly greater than that for molybdate-stabilized R (R_i) in high-salt sucrose gradients, whatever ligand bound to R. The affinities of the two R-4-hydroxytamoxifen (OHT) complexes (R_i -OHT and R_a -OHT) were significantly higher than those of the corresponding R-estradiol (E_2) complexes

 $(R_i-E_2, \text{ and } R_a-E_2)$. The affinities for B_{36} increased in the order $R_i-E_2 < R_i$ —OHT $< R_a-E_2 < R_a$ —OHT, the mean values for the relative affinities being 1, 3.0, 4.6, and 11.0, respectively. The affinity of the molybdate-stabilized R-4-hydroxytamoxifen complex was approximately 3.0-fold higher than that of the corresponding R-estradiol complex. The affinity of the activated anti-estrogen complex for B_{36} was ~ 2.4 -fold higher than that of the estradiol complex.

B₃₆ Antibody Inhibits the Binding of Receptor-Estradiol and Receptor-4-Hydroxytamoxifen Complexes to DNA. In an attempt to localize the relative positions of the B₃₆ and DNA binding domains on the R, we studied the interaction of R complexes with double-stranded calf DNA in the presence or absence of B₃₆ antibody. The R-DNA complex was measured by adsorption of the R onto DNA-cellulose with or without pretreatment of the cytosol R with the B₃₆ antibody at binding equilibrium (≥12 h at 2 °C) as described previously (Evans et al., 1982). In the case of the $R-E_2$ complex, a marked and significant (p < 0.01) decrease of the proportion of complex bound to DNA was observed after preincubation with crude or purified preparations of B_{36} (Table II). Preincubation of the R-estradiol complex by heating the cytosol at 25 °C decreased binding of the complex to DNA as observed previously (André, 1977). The B₃₆ antibody decreased binding of the R-estradiol complex to DNA whether or not the complex was preactivated. The inhibition was not

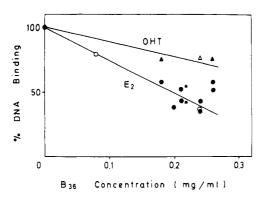


FIGURE 7: Effect of B₃₆ antibody on DNA binding of the estrogen receptor. The relative DNA binding of the R-³H-labeled ligand complexes after interaction with varying concentrations of crude or purified (*) preparations of B₃₆ was evaluated by the DNA-cellulose assay as described in Table II and is plotted against the concentration of B₃₆ used. The 100% value corresponds to the DNA binding of R complexes preincubated without the B₃₆ antibody. (●) Preactivated and (O) nonpreactivated R-estradiol complexes; (▲) preactivated and (△) nonpreactivated R-4-hydroxytamoxifen complexes.

overcome by increasing the time of incubation, suggesting that it was not due to a delay in reaching equilibrium. This inhibition was dependent on the concentration of B₃₆ and appeared slightly more pronounced when R had been activated in the presence of estradiol rather than 4-hydroxytamoxifen (Figure 7). However, the difference observed between the two complexes is not statistically significant because of the limited number of experiments performed with 4hydroxytamoxifen. B₃₆ antibody concentrations which altered the sedimentation of all R complexes in sucrose gradients only partially inhibited ($\approx 60\%$) DNA binding, indicating that a quaternary complex, B₃₆-(R-ligand)-DNA, could be formed. The inhibition appeared to be specifically due to the B₃₆ antibody, since the addition of equal concentrations of nonspecific antibodies (IgG) did not decrease the binding of the R-estradiol complex to DNA. In addition, the B₃₆ antibody, which does not interact with the rat uterine R (Greene et al., 1980a), did not affect the DNA binding of the rat R-estradiol complex (Table II). These results indicate that B₃₆ did not prevent binding of R complexes to DNA by a nonspecific mechanism, for instance, partial proteolysis. We, therefore, conclude that the B₃ antibody inhibited DNA binding as a result of a specific interaction with R-ligand complexes.

Discussion

This study, using the B₃₆ monoclonal antibody that was raised against the calf uterine R-estradiol complex, has provided three series of results: (1) The antibody interacts more strongly with the activated cytosol R than with the molybdate-stabilized R. This is not surprising as this antibody was raised against an activated nuclear R and is consistent with the finding that the B₃₆ antibody interacts more strongly with the nuclear R than with the cytosol R (Greene et al., 1980a). (2) The antibody specifically recognizes the cytosol R and the nuclear R whether bound to estrogen or anti-estrogen, thus allowing a comparison between the reactivities of the two types of complexes to be made. Two differences were found between the interaction of B₃₆ with the R-estradiol and the R-4hydroxytamoxifen complexes. First, the molybdate-stabilized cytosol R interacts more strongly with B_{36} when bound to 4-hydroxytamoxifen than when bound to estradiol. The reason for this greater interaction of B₃₆ antibody with the R-4hydroxytamoxifen complex is not known but is probably related to specific antigen-antibody recognition since the rat R-4-hydroxytamoxifen complex does not interact with B₃₆.

Second, in high concentrations of salt, the activation step increases the reactivity of the R-4-hydroxytamoxifen complex for B_{36} slightly less ($\simeq 3.7$ -fold) than that of the R-estradiol complex (\simeq 4.8-fold). (3) The B_{36} antibody inhibits the binding of R to DNA. This inhibition is not observed with other antibodies which do not react with R (nonspecific IgG) or with cytosol R that does not react with B₃₆ (rat uterus). B₃₆ did not completely inhibit the binding of complexes to DNA; a maximum of 60% inhibition was obtained for B₃₆ concentrations that displaced all the R in sucrose gradients. This partial inhibition by B₃₆ suggests either a decreased affinity of R for DNA or a heterogeneous population of R-DNA complexes, only some of which are affected by B₃₆. Our results contrast with those observed for the DNA binding of the glucocorticoid receptor, which was unaffected by both IgMclass monoclonal (Westphal et al., 1982) and polyclonal (Carlstedt-Duke et al., 1982) antibodies.

The relative localizations of the DNA and B₃₆ binding domains of the R cannot be ascertained from these experiments. These two binding domains may partially overlap, or they may be distinct but functionally related, the binding of B₃₆ to the R resulting in a decreased affinity of R for DNA. These two domains may also be distinct and functionally independent, the lower reactivity of R for DNA in the presence of B₃₆ being due to steric hindrance of the DNA binding site of R by the bulky IgM antibody. A relationship between the DNA and B₃₆ binding domains is, however, the most likely, since the activation step alters the degree of interaction of both R with DNA (Yamamoto & Alberts, 1972) and R with the B₃₆ antibody (this paper). While molybdate totally prevented the interaction of R with DNA (J.-L. Borgna, unpublished results), it decreased but did not suppress the R-B₃₆ interaction. However, even though the R-4-hydroxytamoxifen complex interacted more strongly with the B₃₆ antibody than the Restradiol complex, the effect of this antibody on the DNA binding of the R-4-hydroxytamoxifen complex appeared weaker. Our results suggest that the conformational changes of R induced by estradiol or by 4-hydroxytamoxifen differ at the hormone site (Rochefort & Borgna, 1981), the DNA binding domain (Evans et al., 1982), and the B₃₆ binding domain (this paper). The present study illustrates that monoclonal antibodies can be used to discriminate different forms of R and to characterize some of their binding domains. Further studies with purified native R are required to map the binding domains located at the surface of R and to discriminate between those which are altered when R interacts with estrogens or anti-estrogens.

Acknowledgments

We are grateful to Drs. G. L. Greene and E. V. Jensen for providing us with the B₃₆ monoclonal antibody and to Dr. A. H. Todd for providing us with [³H]-4-hydroxytamoxifen. We thank Dr. G. L. Greene and M. Garcia for helpful discussions, B. Westley for correcting our use of the English language, and P. Hamoum for typing the manuscript.

References

Alberts, B., & Herrick, G. (1971) Methods Enzymol. 21, 198-217.

André, J. (1977) Ph.D. Thesis, USTL University of Montpellier, Montpellier, France.

André, J., & Rochefort, H. (1973) FEBS Lett. 29, 135-140. Blondeau, J. P., & Robel, P. (1975) Eur. J. Biochem. 55, 375-384.

Borgna, J.-L., & Rochefort, H. (1980) Mol. Cell. Endocrinol. 20, 71-85. Burton, K. (1956) Biochem. J. 62, 315-323.

Capony, F., & Rochefort, H. (1975) Mol. Cell. Endocrinol. 3, 233-251.

Carlstedt-Duke, J., Okret, S., Wrange, O., & Gustafsson, J. A. (1982) *Proc. Natl. Acad. Sci. U.S.A.* 79, 4260-4264. Evans, E., Baskevitch, P. P., & Rochefort, H. (1982) *Eur. J.*

Biochem. 128, 185–191.

Garcia, M., Greene, G., Rochefort, H., & Jensen, E. V. (1982) Endocrinology (Baltimore) 110, 1355-1361.

Greene, G. L., Fitch, F. W., & Jensen, E. V. (1980a) Proc. Natl. Acad. Sci. U.S.A. 77, 157-161.

Greene, G. L., Nolan, C., Engler, J. P., & Jensen, E. V. (1980b) *Proc. Natl. Acad. Sci. U.S.A.* 77, 5115-5119.

Jordan, V. C., Collins, M. M., Rowsby, L., & Prestwich, G. (1977) J. Endocrinol. 75, 305-316.

Layne, E. (1957) Methods Enzymol. 3, 444-454.

Leach, K. L., Dahmer, M. K., Hammond, N. D., Sando, J. J., & Pratt, W. B. (1979) J. Biol. Chem. 254,

11884-11890.

Mann, H. B., & Whitney, D. R. (1947) Ann. Math. Stat. 18, 52-54.

Moncharmont, B., Su, J. L., & Parik, I. (1982) *Biochemistry* 21, 6916-6921.

Nishigori, H., & Toft, D. (1980) Biochemistry 19, 77-83. Rochefort, H., & Borgna, J.-L. (1981) Nature (London) 292, 257-259.

Rochefort, H., Borgna, J.-L., & Evans, E. (1983) J. Steroid Biochem. 19, 69-74.

Weichman, B. M., & Notides, A. C. (1977) J. Biol. Chem. 252, 8856-8861.

Westley, B., & Rochefort, H. (1980) Cell (Cambridge, Mass.) 20, 353-362.

Westphal, H. M., Moldenhauer, G., & Beato, M. (1982) EMBO J. 1, 1467-1471.

Yamamoto, K. R., & Alberts, B. (1972) Proc. Natl. Acad. Sci. U.S.A. 69, 2105-2109.

Oxygen Equilibrium Studies on Carp-Human Hybrid Hemoglobins[†]

Timothy Causgrove, Dixie J. Goss, and Lawrence J. Parkhurst*

ABSTRACT: Hybrid hemoglobins have been made in which one chain is derived from human hemoglobin and the other from carp hemoglobin. Both hybrid hemoglobins show low cooperativity in oxygen binding. Hybrid I (α carp: β human) has a very small Bohr effect, whereas hybrid II (α human: β carp) has a Bohr effect nearly as large as that for human hemoglobin. Both hemoglobins have P_{50} 's more closely resembling carp hemoglobin than human hemoglobin in the region of pH

7, and for both hybrids, as for carp, cooperativity virtually disappears at acid and alkaline pHs. Since both hybrids are formed from chains derived from cooperative parent hemoglobins, it is difficult to account for the low cooperativity in terms only of the T-state salt bridges and the α_1 - β_2 contacts involved in the R-T switch region. We suggest that the F9 Ser in the carp β -chain as well as α_1 - β_1 interactions is important in controlling the allosteric transitions in these hybrids.

xygen binding equilibria have been extensively studied in both human and carp hemoglobins (Roughton & Lyster, 1969; Imai & Yonetani, 1975; Imai, 1973; Noble et al., 1973; Tan et al., 1973; Chien & Mayo, 1980; Parkhurst et al., 1983). In human hemoglobin, the cooperativity is virtually unchanged over the pH range 6-9, and the ligation has frequently been interpreted to first order in terms of R and T quaternary conformations (Shulman et al., 1975; Baldwin, 1975). Within this framework, the Bohr effect corresponds to a shift of the R-T equilibrium toward T as the pH is decreased from 9 to 6. In many fish hemoglobins, the pronounced Bohr effect is known as the "Root effect" (Root, 1931; Root & Irving, 1941, 1943). At pH 6 (+IHP),1 carp hemoglobin, in both deoxy and liganded forms, is in the T state; at pH 9, both deoxy and liganded forms are in the R state (Tan et al., 1972, 1973). At these extremes of pH, the hemoglobin is noncooperative in oxygen or CO binding. At intermediate values of pH, an equilibrium exists between the R and T forms, and cooperativity is observed in ligand binding. The importance of the β -93 Ser in carp and its interaction with His-147 β have recently been discussed (Parkhurst et al., 1983; Perutz & Bru-

nori, 1982). We were interested in observing the ligation properties of hybrid hemoglobins made by combining complementary chains from these two cooperative parent hemoglobins. We report in this paper the oxygen equilibrium binding properties of the two human—carp hybrid hemoglobins and discuss the ligand equilibria in terms of allosteric models and substitutions at selected sites.

Materials and Methods

Protein Preparation. Human hemoglobin was prepared from whole blood and separated into α - and β -chains by the methods described by Geraci et al. (1969). The separated chains were stored frozen as small pellets under liquid nitrogen. Carp hemoglobin was prepared from red blood cells (also stored in liquid nitrogen) as described by Tan et al. (1972). The carp hemoglobin was then separated into α - and β -chains as described in the following paper (Goss & Parkhurst, 1984). For these preparations, the CO form of the protein was used to prepare carp hemoglobin chains. Polyacrylamide gel electrophoresis was carried out in slabs following Brewer &

[†]From the Department of Chemistry, University of Nebraska, Lincoln, Nebraska 68588-0304. Received May 9, 1983; revised manuscript received November 15, 1983. This research was supported by NIH Grant HL 15,284, NSF Grant PCM 8003655, and the Research Council, University of Nebraska.

¹ Conventional three-letter codes are used for the amino acids: Ser, His, Glu, Asp, Val, Gln, Pro, Ala, Lys, Arg, Trp, and Thr refer respectively to the amino acids serine, histidine, glutamic acid, aspartic acid, valine, glutamine, proline, alanine, lysine, arginine, tryptophan, and threonine. Results referred to with +IHP are for experiments in which the buffer contained 1 mM inositol hexaphosphate (IHP).